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Fig. 5. Differential phase shift as a function of frequency for a = 1 cm,
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V. CONCLUSION

A general technique to study propagation in loaded circular

cylindrical guiding structures was developed and applied to a

cylindrical waveguide containing a coaxial tube of ferrite

azimuthally magnetized to remanence (no accurate solution

was previously available for this structure). This geometry can

be used to realize latching rotators and phase-dependent phase

shifters for cross-polarization compensation in high-frequency

telecommunications.

Computer results were presented for one particular structure

showing the influence of geometric parameters, material proper-

ties, and frequency. Since a large number of parameters are

involved, it is not possible to present a more general description.

It is hoped that the results presented will give a general idea of

the behavior of the structure considered. The presence of a thin

latching conductor at the waveguide center produces a negligible

effect on the propagation constant of the HEI ~ modes. On the

other hand, precautions must be taken not to launch coaxial-line

modes over the loaded section. The side connections of the

conductor are equivalent to shunt capacitors for one of thelin-

early polarized modes. Their effect can, however, be compensated

over a broad frequency band by the addition of a series induc-

tance at the same location [17]. Device optimization should take

into account specified frequency bands and parameters of ferrite

materials actually available in tube form. The authors would be

pleased to provide, on a complimentary basis, copies of the

computer listing to readers interested in pursuing further the

study presented here.
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Behavior of the Magnetostatic Wave in a Periodically

Corrugated YIG Slab
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Abstract—An analysis for the propagation characteristics of the
magnetoitatic wave in a YIG slab having periodically corrugated surfaces
is presented. The Brillonin diagrams, close to the intersection point
(ro,K) of m = O and m = – 1 space harmonics, are obtained for different

slab thicknesses, and the nonexistence of leaky wave modes has been

established. Some discussions concerning the internal dc magnetic field
and the propagation loss are also presented,

I. INTRODUCTION

The periodic structures in dielectric media have long been a

center of attraction of many researchers, particularly for their

usefulness in many devices like filters, surface wave antennas,

and distributed feedback (DFB) amplifiers in microwave and

optical integrated circuits [1 ]– [4]. Recently, one of the present

authors treated the case of propagation characteristics of

magnetostatic waves in periodically magnetized ferrites where

the internal dc magnetic field was modulated by providing

additional magnets which were placed periodically around the

YIG sample [5]. Also Elachi, in his paper [6], has studied the

propagation of magnetic waves in an infinite periodic medium

where he considered the dielectric constant of the medium to

vary sinusoidally in space and treated the case of DFB-type

magnetic wave oscillators. However, the effect of periodicity of

the dielectric constant is rather small, because of the fact that a

magnetic wave can propagate with no electric field components

[7].

The present short paper investigates the propagation of the

magnetostatic wave through a YIG slab having a periodically
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Fig. 1. Geometry of the corrugated structure.

corrugated surface. The Brillouin diagrams are obtained for the

region close to the intersection point (co,K) of the fundamental

mode of backward waves and the first space harmonic of forward

waves. Some discussions are presented as regards the internal

variation of the dc magnetic field and the associated propagation

10ss.

II. DISPERSION RELATION

The geometry of the problem can be seen from Fig. 1. It

consists of an open-guide structure and a periodically corrugated

YIG slab with an average thickness of 2h and a periodicity of d.

Thus

x=h–A&s2z
d

(1)

where A is the strength of the modulation in the x direction. The

biasing magnetic field Hi is assumed to be appliedl in the same

direction as that of the magnetostatic wave propagation (i.e., z

propagation of electromagnetic waves in a periodic dielectric

waveguide. However, this analytical method is based on a

Rayleigh expansion which neglects the presence of incident

waves in the corrugated region. Thus the solution obtained is

more appropriate for the case of small modulations [3], [10].

The solutions of the magnetic potentials in air and YIG can

conveniently be expressed in a similar form as the electric fields

within a periodic dielectric waveguide

and

( )4 = ~ B~,p cos KX,mX – ~ TC #K.+(’~mld))z-ju’, (8)
nl. -m

In the preceding equations, Am,P and Bm,p are the coefficients

of space harmonics, and p denotes the mode pattern. Thus p = 1

corresponds to the antisymmetric mode of the magnetic potential

in the thickness direction and p = 2 to the symmetric mode.

Substituting (7) and (8) into (5) and (6), the transverse propaga-

tion constants y~ and Kx,m can be related by

and

1
K =——

“m J-pl

Kzi-~m.

(9)

(lo)

direction). In the geometry of Fig. 1, the volume mode of the

magnetostatic wave can propagate in accordance with the
The complete set of the expressions for the RF magnetic field

discussion in the paper of Damon and Eshbach [8].
components in YIG may be written from (2), (4), and (8) as

The relation between the magnetic flux and the magnetic field

in the medium can be expressed as
‘x= Kxmsin@mx-T)G’z’Bm,

(11)

assuming ~–-@~ as the time dependence of the fields. In the

preceding equation, ~1 = 1 + (,uoy)2HiM/((y~oHi)2 – co’) and

/u2 = /fOy~~/((yLOffi)2 – C02), y being the gyromagnetic ratio

and Kokf the magnetic saturation.

In the quasi-static condition, Maxwell’s equation can be

approximated as

VXH=O (3)

and the RF magnetic field H may be expressed in terms of the

scalar magnetic potential ~ as

H= –V~. (4)

By using (2), (4), and Gauss’s law V , B = O, and further assum-

ing the nondependence of the fields in the y direction, the mag-

netostatic potential equation may easily be obtained as

(5)

On the other hand, the magnetic potential do in air satisfies the

relation

(?2 do (?2 #o o

ax’ + az2 = “
(6)

The proceeding analysis is carried out following the same an-

alytical procedure as that of Dabby et al. [9] in a problem of the

‘z=-’Fz+%m)cOsF.~)G(z)Bm’12)

( )BX z poplKx,m sin KX,~x – ~ n G(z)B~,P (13)

and

‘z= -jyobz+ ?m)cOskxmx-~z)G (z)BmJ’

(14)

In a similar fashion, the field components in the air region are

written as

HXO = yme– ~mxG(z)A~,p (15)

‘Zo=-’(KZ+$m)e-’”xG(z)Am(16)

BXO = poy~e ‘~~xG(z)A~,P (17)

’20=“p”(K2+%m)e-ym’G(z’18)
In all the preceding expressions, the term G(z) =
ej(Kz + (2zm/d))z – jmt

From the consideration of the periodic boundary conditions,

the field components must be related to an extra term 0, the

gradients of the boundary surface due to the presence of the
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corrugation, unlike in the case of a noncorrugated

The expression governing this is written as

tan(3=$Asin$z.

structure.

(19)

The application of the continuity condition for the tangential

components of the RFmagneticfieldatx = h – Acos(2z/d)z

results in

HzOcosf3 + HXOsint9 = Hzcosf3 + iTXsin O (20)

while the continuity of the normal components of the RF

magnetic flux densities yields

Bzocosd+ BXOsind = Bzcosd + BXsin~ (21)

where tan 8 = cot 0. By substituting the field components of

(11)-(18) into the boundary condition of (20), one can obtain

z‘“’{(KZ+zm)cOs(Kxmh-~-Vn)M.—m

. J1.-~l(KX,~A)

+ KX,m

–[(

~Asin K ~_pfl_\n-m-l\n

d
x,m

2 2 )

. Jln_~_ll(KX,~A)

(_sin Kh_p~_ln–m+ 11
x,m n

2 2 )

. .ll._~+ll(KX,~A) 11
-~~mA.,Pe-Y”h

[(KZ ‘%m)’’n-m’(’mA) +:Aym

}
“ [4n-m-,,(YmA) - Z,n-m+Il(Y#)] = 0. (22)

Also, the application of the boundary condition of (21) with the

same set of field component’s equations (1 1)–(18) yields

y ‘“P{“’Kxmsin(K’”’-~-=+nl. -m

“ “n-m’(KxmA)-:A(Kz‘:m)
“[(COS KX,mh-~~-[n-m-l[n

2 2 )

. J[._~_ll(KX,MA)

(—cos KX,m
~_< Z_ln-m+ll Z

2 2 )

. Jln-m+ll(Kx,mA) II
- ~~mAm,Pe-’mh

{ ‘m’’n-m’(’mA)- (K’ ‘:m)

)“ : A[Lm-II&A) – ~1”-m+lI()@)l = 0.

(23)

In the preceding equations, n is an integer with the limits of

– co < n < + co, and Jn and Z. are the Bessel function and the

modified Bessel function of the first kind, respectively. The above

two equations of (22) and (23) are slightly more complex in form

as compared to those of the periodic dielectric waveguide [9].

If this infinite set of homogeneous algebraic equations is to have

a nontrivial solution, a determinant formed by the coefficients of

Am,p and Bin,, must vanish, leading to the final dispersion relation.

III. NUMERICAL RESULTS

To obtain a numerical solution of the dispersion relation, the

infinite set of homogeneous algebraic equations must be solved.

The nature of the wave propagating through a periodic medium

is that the mth harmonic gets coupled directly to the m – lth

and m + lth harmonics and indirectly to the others [4]. Thus,

neglecting the higher harmonics, the coupling region close to

the intersection (co,Kz) of the m = O and m = – 1 space har-

monics is important on the assumption that the modulation

strength A is very small, and further,

ZO(YA = 1,

Jo(KX,~A) E 1,

In(ymA) % O,

J.(LA) = 0> n#O.

On these approximations, a sim’ple dispersion relation maybe

obtained from (22) and (23) as

(J=[l-6A)’]cots-’-[2’-6A)’]}
“{G[l-(:A)21c0ts0-[“1-CA)’])

(24)

where

In the limiting case of A = O in (24), the coupling between the
m = O and them = — 1 space harmonic modes maybe removed,

leading to the following equations:

J-p, Cots_l = p, d% cot so = ,U, (25)

which are the ordinary dispersion relations of magnetostatic

volume mode [8].

The typical Brillouin diagrams very near the coupling region

are presented in Fig. 2 (a) and (b) for four different values of the

modulation index A/h and two different values of h/d, where the

value of p is assumed to be unity. For the evaluation of (24),

numerical values for the intensities of the internal magnetic field

and the magnetic saturation are assumed to be 5 x 10-2 Wb/m2

and 1.73 x 10-1 Wb/m2, respectively. The dispersion diagram

for the volume mode of the m = O magnetostatic wave, in the

frequency region limited between the resonanee points off. =

2.95 GHz (f. = (y,uo/2z)~Hi(Hi + M)) and fk = 1.41 GHz

(A = (yMfi/2~)), shows a negative SOUP velocity character-
istic in the absence of the corrugated surface [8]. On the other

hand, a positive group velocity due to the m z – lth harmonic
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Fig.2. Brillouin diagram very nearthe coupling region. —— : K, pure
real.–––––: K= complex. (a) /s/d = 1. (b) h/d = 0.25.

mode appears in the presence of the surface corrugation, thus

showing the existence of a coupling between the forward and the

backward waves asshown inthesolid lines of Fig. 2. Further,

it can be seen that a stopband of range between 7 amd 50 MHz

appears if the A/h value is changed from 1 to 7 percent as in

Fig. 2 (a), whereas it is about 10 MHz in the case of A/h = 1

percent as in Fig. 2 (b). Thus the bandwidth can clearly be seen

to be proportional to the magnitude of the modulation index

A/h. The comparison between Fig. 2 (a) and (b) indicates that

the stopband width has a tendency to increase with decreasing

values of h/d. The dashed line in Fig. 2 represents the complex

value of the propagation constant within the stopband. This can

be estimated numerically from the eigenvalue equation of (24)

through some approximations such as

K= = K,O + AK, ~ AK= ? & AK, (26)
‘an J-pl d-p,

where the propagation constant of Kzo satisfies the Bragg

condition [4], i.e., by applying Kzo = n/d. Thus one obtains

value of AKz at Bragg frequency is about (0.05/d)z for A/h = 5

percent.

On the other hand, any leaky wave mode does not exist in

the magnetostatic wave case unlike in the case of a periodic

dielectric waveguide [2]. This is because of the simple fact that

the transverse propagation constant in air is always real in any

space harmonic, which can be interpreted as an evanescent mode.

Next, some general explanations of the present problem with

regard to its utilities from practical design aspects are presented.

The demagnetizing effects in the presence of corrugation are

very important, especially for large indexes of modulation. The

corrugated surface in fact enhances the variation of the internal

dc magnetic field. In this case, the dispersion characteristics show

the effects of both the corrugation and sinusoidal variation of

the internal dc magnetic field [5]. However, the demagnetizing

effect will be negligible in the case of small indexes of modulation

and small periodicity, whereas the demagnetizing factor in

magnetic field di~ection (i.e., z direction), which appears in the

presence of the finite length of slab, must be taken into account,

particularly for a very thin YIG slab. Another factor is that it is

practically slightly difficult to obtain a perfect corrugated

surface by grooving mechanically the YIG surface, though the

fundamental characteristic remains the same, as the corrugated

shape is considered as one of the fundamental components of

Fourier series expansion for the small indexes of the modulation.

The Brillouin diagrams are also shown for small thickness

values of the slab. The propagation loss may be large for a very

thin slab, since the transverse propagation constant Kx becomes

small as is clear from (10) where I – U1 I is nearly equal to 1 like

Fig. 2 (b). This attributes to one practical limitation for filter

applications; however, the loss may be reduced by using better

materials [11 ]. Further, in the case of DFB-type magnetic

oscillator applications, the frequency ~ should be chosen nearly

equal to yUOHi/2n, (i.e., I – ,uI I >> 1) as shown in Fig. 2 (a), [6],

[12]. As a result, the loss in this frequency limit obviously carries

much importance which must be given proper consideration.

IV. CONCLUSION

The preceding sections discussed the propagation problem of

the magnetostatic wave in periodically corrugated surface of a

YIG slab. The corresponding Brillouin diagrams have also been

presented. Further, from the diagrams of the propagation

constant within the stopband, a stopband frequency of about 10

MHz was obtained for a small modulation index of 1 pereent.

It has also been shown that no leaky mode exists at any frequency.

On the other hand, if we use the perturbation technique as has

been discussed by Elachi et al. [13], the problems of a periodic

structure considered here may be solved in a more simple form,

/

AKzh =
(-l - 6A)21ta]’(*:h)+F’-6A)2112-EA(l-L’)}’

{F’-6A)21titan(*3-[1-6A)’])’-b%A(l-“)tan(+~h)}’”’27)
When tan ((1/~ – u,). (z/d)h) within the root of (27) satisfies (25) and also the perturbation technique may be versatile to solve

and (26), (27) may be rewritten in the very simple fcwm complex problems like the propagation of magnetostatic surface

waves in a corrugated YIG slab [11].

AKzh=j~A (28)
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On the Theory and Application of the Dielectric Post

Resonator

MARIAN W, POSPIESZALSKI

Abstract—This short paper deals with the modes of the dielectric post

resonator when e, is large. The normalized frequency FO = (rrD/10) &

as a function of D/L is diicnsscd. The simple approximate expressions
for the resonant frequencies of the lower order modes are given. The
properties of the TEO1, mode are discussed in detail from the point of

view of its application to the measurement of the complex permittivity
of microwave dielectrics. Curves and expressions for fast and simple
determination of the maximum measurement errors are given.

I. INTRODUCTION

In this short paper, the resonant properties of the structure

shown schematically in Fig. I will be discussed. The cylindrical

sample of a low-loss high+, dielectric material is placed between

two parallel conducting plates. This structure, known in the

literature as the dielectric post resonator, was applied by Hakki

and Coleman [1], and later by Courtney [2], to measurements

of the complex permittivity and complex permeability of micro-

wave insulators. It was also used to provide high RF field

concentrations on ferrite crystals [3], [5]. Present availability

of the low-loss high-e. temperature compensated ceramics

(for instance, [6], [7]) should permit introduction of this

structure as an element of microwave filters, oscillators, etc.

Information on the modes of the dielectric post resonator that

can be found in the literature are valid only for certain values of

&r [2 ]– [4 ]. A mode chart, together with approximate expressions

for the resonant frequencies of the lower order modes, valid for

all cases when e, > 10 is given. Though the properties of the

Manuscript received March 2, 1976; revised August 2, 1976.
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(a) z=L

(b)

Fig. 1. Dielectric rod placed between two infinite paraflel perfectly con-
ducting plates.

particular TEOI ~ mode were discussed in detail [1], [2], some

important simplifications can be carried out, as is shown in the

following.

II. DIELECTRIC POST RESONATOR

Basic Relations

Referring to Fig. 1, the dielectric post resonator can be

described as a dielectric rod transmission line short circuited

at both ends. The characteristic equation for the normal modes

of the structure [8], [9] can be written in the form

‘J++K+)(++(--)F++?)=O
(1)

()trD 2

()

xD1 2

~
er=uz+ —

‘2= E)2- (:)2

(2)

(3)

and

~- = Jn-1(~) ~+ = J/I+l(u)

uJm(u) uJn(u)

~. = K1-l(w) ~+ = Kn+~(w)

wKn(w) MrCn(w)

where .fn is the Bessel function of the first kind of nth order, Kn

is the modified Hankel function of nth order, 1 is the number of

half-wavelengths in the cavity along the axial direction, D and L

are the diameter and length, respectively,s, is the relative dielectric

constant, and 10 is the free-space wavelength corresponding to

the resonant frequency fo, The solution of the preceding set of

equations can be most conveniently presented in the form

F02 = (trD/Lo)2er = fl(D/L). Fo, which we call a normalized

frequency variable, is very small dependent on:, when:, is much

greater than unit y. Indeed, for all values D/L > 0 and E. + co,

the asymptotic form of the previous equations is

(f+ + K+)J- + (J- – K-)J+ = O (4)

F02 = Z/ + W2 (5)

zD1
w.—.

2L
(6)

This is very well illustrated by the mode chart for the lower

order modes shown in Fig. 2. The solutions fore, > 500 cannot

be distinguished graphically. The largest difference in the range of

interest for these cases is 0.46 percent for the TEO ~~ mode and

(D/L)2 = 0.5.


