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Fig. 5. Differential phase shift as a function of frequencs; ffor a=1c¢m,
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V. CONCLUSION

A general technique to study propagation in loaded circular
cylindrical guiding structures was developed and applied to a
cylindrical waveguide containing a coaxial tube of ferrite
azimuthally magnetized to remanence (no accurate solution
was previously available for this structure). This geometry can
be used to realize latching rotators and phase-dependent phase
shifters for cross-polarization compensation in high-frequency
telecommunications.

Computer results were presented for one particular structure
showing the influence of geometric parameters, material proper-
ties, and frequency. Since a large number of parameters are
involved, it is not possible to present a more general description.
It is hoped that the results presented will give a general idea of
the behavior of the structure considered. The presence of a thin
latching conductor at the waveguide center produces a negligible
effect on the propagation constant of the HE;; modes. On the
other hand, precautions must be taken not to launch coaxial-line
modes over the loaded section. The side connections of the
conductor are equivalent to shunt capacitors for one of the lin-
early polarized modes. Their effect can, however, be compensated
over a broad frequency band by the addition of a series induc-
tance at the same location [17]. Device optimization should take
into account specified frequency bands and parameters of ferrite
materials actually available in tube form. The authors would be
pleased to provide, on a complimentary basis, copies of the
computer listing to readers interested in pursuing further the
study presented here.
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Behavior of the Magnetostatic Wave in a Periodically
Corrugated YIG Slab

MAKOTO TSUTSUMI, MEMBER, IEEE,
YASUNORI SAKAGUCHI, ano NOBUAKI KUMAGALI,
SENIOR MEMBER, IEEE

Abstract—An analysis for the propagation characteristics of the
magnetostatic wave in a YIG slab having periodically corrugated surfaces
is presented. The Brillouin diagrams, close to the intersection point
(w,K)of m = 0and m = — 1 space harmonics, are obtained for different
slab thicknesses, and the nonexistence of leaky wave modes has been
established. Some discussions concerning the internal dc magnetic field
and the propagation loss are also presented.

I. INTRODUCTION

The periodic structures in dielectric media have long been a
center of attraction of many researchers, particularly for their
usefulness in many devices like filters, surface wave antennas,
and distributed feedback (DFB) amplifiers in microwave and
optical integrated circuits [1]-[4]. Recently, one of the present
authors treated the case of propagation characteristics of
magnetostatic waves in periodically magnetized ferrites where
the internal dc magnetic field was modulated by providing
additional magnets which were placed periodically around the
YIG sample [5]. Also Elachi, in his paper [6], has studied the
propagation of magnetic waves in an infinite periodic medium
where he considered the dielectric constant of the medium to
vary sinusoidally in space and treated the case of DFB-type
magnetic wave oscillators. However, the effect of periodicity of
the dielectric constant is rather small, because of the fact that a
magnetic wave can propagate with no electric field components
[71.

The present short paper investigates the propagation of the
magnetostatic wave through a YIG slab having a periodically
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Fig. 1. Geometry of the corrugated structure.

corrugated surface. The Brillouin diagrams are obtained for the
region close to the intersection point (w,K) of the fundamental
mode of backward waves and the first space harmonic of forward
waves. Some discussions are presented as regards the internal
variation of the dc magnetic field and the associated propagation
loss.

II. DiSPERSION RELATION

The geometry of the problem can be seen from Fig. 1. It
consists of an open-guide structure and a periodically corrugated
YIG slab with an average thickness of 2k and a periodicity of 4.
Thus

x=h—Aéos27nz €))

where A is the strength of the modulation in the x direction. The
biasing magnetic field H; is assumed to be applied in the same
direction as that of the magnetostatic wave propagation (i.e., z
direction). In the geometry of Fig. 1, the volume mode of the
magnetostatic wave can propagate in accordance with the
discussion in the paper of Damon and Eshbach [8].

The relation between the magnetic flux and the rnagnetic field
in the medium can be expressed as

#y —juy 0
B=ypo\ju, m 0-H
0 0 1 2)

assuming e~ 7*! as the time dependence of the fields. In the
preceding equation, g, = 1 + (uey)>H,M/((yuoH;)?> — »?) and
1y = UoyMol((PuoH)? — w?), y being the gyromagnetic ratio
and poM the magnetic saturation.

In the quasi-static condition, Maxwell’s equation can be
approximated as

Vx H=0 3

and the RF magnetic field H may be expressed in terms of the
scalar magnetic potential ¢ as

H= -V @)

By using (2), (4), and Gauss’s law V - B = 0, and further assum-
ing the nondependence of the fields in the y direction, the mag-
netostatic potential equation may easily be obtained as
>¢ ¢
— + — = 0. 5
Hy Ox? 922 )
On the other hand, the magnetic potential ¢, in air satisfies the
relation
P ¢o
ox?

9o
o0z?

= 0, ©)

The proceeding analysis is carried out following the same an-
alytical procedure as that of Dabby et al. [9] in a problem of the
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propagation of electromagnetic waves in a periodic dielectric
waveguide. However, this analytical method is based on a
Rayleigh expansion which neglects the presence of incident
waves in the corrugated region. Thus the solution obtained is
more appropriate for the case of small modulations [3], [10].
The solutions of the magnetic potentials in air and YIG can
conveniently be expressed in a similar form as the electric fields
within a periodic dielectric waveguide

+
¢0 — Z Am’PeJ(K=+(2n/d)m)ze—ymx—Jo)t
m=-—o

Q)

and

¥ P J(K 2+ (2em/d))z — jot
¢ = Y B,,cos (Kx,,,,x -3 n) K= . (8)

m= — oo

In the preceding equations, 4,, , and B,, , are the coefficients
of space harmonics, and p denotes the mode pattern. Thusp = 1
corresponds to the antisymmetric mode of the magnetic potential
in the thickness direction and p = 2 to the symmetric mode.
Substituting (7) and (8) into (5) and (6), the transverse propaga-
tion constants y,, and K, ,, can be related by

2
Y = |Ke ¥ = m &)
d
and
K= L K, + 2——”m . (10)
\/“lll d

The complete set of the expressions for the RF magnetic field
components in YIG may be written from (2), (4), and (8) as

H, = K, sin (Kx,mx - ’%T) G(2)B,, (11)

o
I

~j (Kz + 2—;m) cos (Kx,mx - %”) G(2)By, (12)

B, = ttott; Ky m Sin (Kx,mx - %n) G(2)By., (13)

—Jjlo (Kz + 2;nm) cos (Kx,mx - l—gn) G(2)B,,,,
(14)

In a similar fashion, the field components in the air region are
written as

on = yme—yme(z)Am,p (15)
, 2n s

Ho=—j|K; + —Em e " G(2)Ap,p (16)

By = :uoyme_yme(Z)Am,p (17

B,o = —Jjto (Kz + ggm) e G(z) A, p- (18)

In all the preceding the

ej(Kz+ (2zm/d))z— jort

expressions, term  G(z) =

From the consideration of the periodic boundary conditions,
the field components must be related to an extra term 8, the
gradients of the boundary surface due to the presence of the
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corrugation, unlike in the case of a noncorrugated structure.
The expression governing this is written as

2n

tan 8 = —2—75 A sin — z. (19)
d d

The application of the continuity condition for the tangential
components of the RF magnetic field at x = A — A cos (2rn/d)z
results in

H,,cos 8 + H,o8in 8 = H,cos 8 + H,sin 8 (20)

while the continuity of the normal components of the RF
magnetic flux densities yields

B,ycos§ + B osind = B,cos @ + B, sin 6 @2n

.where tan § = cot 6. By substituting the field components of
(11)-(18) into the boundary condition of (20), one can obtain

m:i)w B,, {(Kz + gg m) cos (Kx,mh — I%‘ _ |_n—2_m| n)
* Jipem (K md)

+ .{(LL" nA [sin (Kx’mh - P _ ]n——m—_ﬂ n)
d > 5

* inem- 1)K mA)

. 7 n—m+1
— sin (Kx,mh __p?_ I__—Z__ln)

: Jln—-m+ II(Kx,mA)] ;

+
S
- Z A,y po”

m=—q

2n T
{(Kz + _d“m) Iln—-ml(ymA) + L_l Aym

 Uineme 11O — I,n_m+1|(ymA)]} - 0. 22)

Also, the application of the boundary condition of (21) with the
same set of field component’s equations (11)-(18) yields

+o0 _
Bup {m Ky Sin (K,,,,,,h - 1—’2’—’ - ‘12—’"1 n)

]

m

2
e T (KamA) — 7(—;A (K, + 7” m)

cos | K, nh _En — I_n_._—_m—_lln
2 2
* Jin—m— 11Ky mB)

-m+ 1
— cos (Kx,mh - %’ T — [_________n '2’1 l n)

: J.n_m+1.(Kx,mA)]}

+ o0 g 27
- Z Am.Fe " ymIln—ml(ymA) -{ K + —d— m

ms= — oo

° 'SA[IIn—m—-II(YmA) - Iln—m+1l(ymA)]} = 0.
(23)
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In the preceding equations, » is an integer with the limits of
— o < n < +o0,and J, and I, are the Bessel function and the
modified Bessel function of the first kind, respectively. The above
two equations of (22) and (23) are slightly more complex in form
as compared to those of the periodic dielectric waveguide [9].
If this infinite set of homogeneous algebraic equations is to have
a nontrivial solution, a determinant formed by the coefficients of
Ay, pand B, , must vanish, leading to the final dispersion relation.

III. NuMEeRICAL RESULTS

To obtain a numerical solution of the dispersion relation, the
infinite set of homogeneous algebraic equations must be solved.
The nature of the wave propagating through a periodic medium
is that the mth harmonic gets coupled directly to the m — 1th
and m + 1th harmonics and indirectly to the others [4]. Thus,
neglecting the higher harmonics, the coupling region close to
the intersection (©,K;) of the m = 0 and m = —1 space har-
monics is important on the assumption that the modulation
strength A is very small, and further,

Io(yed) = 1,
JoKsemB) ~ 1,
L(ymA) & 0,
JKemd) =0, 1 #0,

On these approximations, a simple dispersion relation may be
obtained from (22) and (23) as

VR e - ()
L G- - )

P
d| {m \? )
=1 I ZA) a-w 4)
27 d
K, - —
d
where
1 j/ 1 2n p
So = KJbh—=n S =—=I|K,——{h—=n
Vi ’ 2 \/—ﬂl j d 2

In the limiting case of A = 0 in (24), the coupling between the
m = OQand the m = —1 space harmonic modes may be removed,
leading to the following equations:

\/—‘lll cotS_y = \/—lh cot S = py 25)

which are the ordinary dispersion relations of magnetostatic
volume mode [8].

The typical Brillouin diagrams very near the coupling region
are presented in Fig. 2 (a) and (b) for four different values of the
modulation index A/h and two different values of h/d, where the
value of p is assumed to be unity. For the evaluation of (24),
numerical values for the intensities of the internal magnetic field
and the magnetic saturation are assumed to be 5 x 102 Wb/m?
and 1.73 x 10™! Wb/m?, respectively. The dispersion diagram
for the volume mode of the m = 0 magnetostatic wave, in the
frequency region limited between the resonance points of £, =
295 GHz (fy = Guo/2n)VH{(H; + M)) and f, = 1.41 GHz
(i = (uoH;/27)), shows a negative group velocity character-
istic in the absence of the corrugated surface [8]. On the other
hand, a positive group velocity due to the m = — 1th harmonic
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Fig. 2. Brillouin diagram very near the coupling region. ———: K, pure
real, - ———— : K, complex. (a) k/d = 1. (b) h/d = 0.25.

mode appears in the presence of the surface corrugation, thus
showing the existence of a coupling between the forward and the
backward waves as shown in the solid lines of Fig. 2. Further,
it can be seen that a stopband of range between 7 and 50 MHz
appears if the A/h value is changed from 1 to 7 percent as in
Fig. 2 (a), whereas it is about 10 MHz in the case of A/h = 1
percent as in Fig. 2 (b). Thus the bandwidth can clearly be seen
to be proportional to the magnitude of the modulation index
Afh. The comparison between Fig. 2 (a) and (b) indicates that
the stopband width has a tendency to increase with decreasing
values of i/d. The dashed line in Fig. 2 represents the complex
value of the propagation constant within the stopband. This can
be estimated numerically from the eigenvalue equation of (24)
through some approximations such as

Kz = KzO + AKz —_— AK

Jul «/

where the propagation constant of K,, satisfies the Bragg
condition [4], i.e., by applying K,, = n/d. Thus one obtains

tan —— — AK (26)
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value of AK, at Bragg frequency is about (0.05/d)x for A/h = 5
percent.

On the other hand, any leaky wave mode does not exist in
the magnetostatic wave case unlike in the case of a periodic
dielectric waveguide [2]. This is because of the simple fact that
the transverse propagation constant in air is always real in any
space harmonic, which can be interpreted as an evanescent mode.

Next, some general explanations of the present problem with
regard to its utilities from practical design aspects are presented.
The demagnetizing effects in the presence of corrugation are
very important, especially for large indexes of modulation. The
corrugated surface in fact enhances the variation of the internal
dc magnetic field. In this case, the dispersion characteristics show
the effects of both the corrugation and sinusoidal variation of
the internal dc magnetic field [5]. However, the demagnetizing
effect will be negligible in the case of small indexes of modulation
and small periodicity, whereas the demagnetizing factor in
magnetic field direction (i.e., z direction), which appears in the
presence of the finite length of slab, must be taken into account,
particularly for a very thin YIG slab. Another factor is that it is
practically slightly difficult to obtain a perfect corrugated
surface by grooving mechanically the YIG surface, though the
fundamental characteristic remains the same, as the corrugated
shape is considered as one of the fundamental components of
Fourier series expansion for the small indexes of the modulation.

The Brillouin diagrams are also shown for small thickness
values of the slab. The propagation loss may be large for a very
thin slab, since the transverse propagation constant K, becomes
small as is clear from (10) where |~ u,] is nearly equal to 1 like
Fig. 2 (b). This attributes to one practical limitation for filter
applications; however, the loss may be reduced by using better
materials [11]. Further, in the case of DFB-type magnetic
oscillator applications, the frequency f should be chosen nearly
equal to yuoH;/2x, (i.e., | —u;] > 1) as shown in Fig. 2 (a), [6],
[12]. As a result, the loss in this frequency limit obviously carries
much importance which must be given proper consideration.

1V. CoNcLusiON

The preceding sections discussed the propagation problem of
the magnetostatic wave in periodically corrugated surface of a
YIG slab. The corresponding Brillouin diagrams have also been
presented. Further, from the diagrams of the propagation
constant within the stopband, a stopband frequency of about 10
MHz was obtained for a small modulation index of 1 percent.
It has also been shown that no leaky mode exists at any frequency.

On the other hand, if we use the perturbation technique as has
been discussed by Elachi ef al. [13], the problems of a periodic
structure considered here may be solved in a more simple form,

|

[ G T i) e ] e )

AK,h =

(b= G) o= Gd) - [ - G 1) - i - o (G5

When tan ((1/ N 1) + (=/d)h) within the root of (27) satisfies (25)
and (26), (27) may be rewritten in the very simple form
AKh = j g A (28)

which determines the maximum value of the purely imaginary
AK,. Also, it can be seen from the dashed lines of Fig. 2 that the

@7

N

and also the perturbation technique may be versatile to solve
complex problems like the propagation of magnetostatic surface
waves in a corrugated YIG slab [11].
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On the Theory and Application of the Dielectric Post
Resonator

MARIAN W. POSPIESZALSKI

Abstract—This short paper deals with the modes of the dielectric post
resonator when ¢, is large. The normalized frequency Fo = (nD/Ao) N &
as a function of D/L is discussed. The simple approximate expressions
for the resonant frequencies of the lower order modes are given. The
properties of the TE,;, mode are discussed in detail from the point of
view of its application to the measurement of the complex permittivity
of microwave dielectrics. Curves and expressions for fast and simple
determination of the maximum measurement errors are given.

1. INTRODUCTION

In this short paper, the resonant properties of the structure
shown schematically in Fig. 1 will be discussed. The cylindrical
sample of a low-loss high-¢, dielectric material is placed between
two parallel conducting plates. This structure, known in the
literature as the dielectric post resonator, was applied by Hakki
and Coleman [1], and later by Courtney [2], to measurements
of the complex permittivity and complex permeability of micro-
wave insulators. It was also used to provide high RF field
concentrations on ferrite crystals [3], [S]. Present availability
of the low-loss high-¢, temperature compensated ceramics
(for instance, [6], [7]) should permit introduction of this
structure as an element of microwave filters, oscillators, etc.
Information on the modes of the diclectric post resonator that
can be found in the literature are valid only for certain values of
& [2]-[4])- A mode chart, together with approximate expressions
for the resonant frequencies of the lower order modes, valid for
all cases when ¢ > 10 is given. Though the properties of the
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Fig. 1. Dielectric rod placed between two infinite parallel perfectly con-
ducting plates.

particular TEy;; mode were discussed in detail 1], [2], some
important simplifications can be carried out, as is shown in the
following.

II. DiELECTRIC PosT RESONATOR

Basic Relations

Referring to Fig. 1, the dielectric post resonator can be
described as a dielectric rod transmission line short circuited
at both ends. The characteristic equation for the normal modes
of the structure 8], [9] can be written in the form

T + K (J' - E) + - —-K") (J+ + E) =0
1
D\ _ 2y (T2
(To) AR (2L) @
2 TE_DI 2 _ Q 2
T (ZL) (lo) @
and
- _ Juo 1) + Jur1(0)
ul (1) ud (u)
- = Kn—](w) + — Kn+1(w)
WK"(W) WKn(w)

where J, is the Bessel function of the first kind of nth order, X,
is the modified Hankel function of nth order, / is the number of
half-wavelengths in the cavity along the axial direction, D and L
are the diameter and length, respectively, ¢, is the relative dielectric
constant, and A, is the free-space wavelength corresponding to
the resonant frequency f,. The solution of the preceding set of
equations can be most conveniently presented in the form
Fy? = (nD[Ao)%e, = fi(D/L). F,, which we call a normalized
frequency variable, is very small dependent on &, when ¢, is much
greater than unity. Indeed, for all values D/L > 0 and &, — o0,
the asymptotic form of the previous equations is

Y+ KDY+~ —K)Jt =0 )
F2 = u? + w? )

nDI
AT ©

This is very well illustrated by the mode chart for the lower
order modes shown in Fig. 2. The solutions for ¢, = 500 cannot
be distinguished graphically. The largest difference in the range of
interest for these cases is 0.46 percent for the TEy;y mode and
(D/L)Y? = 0.5.



